Qualitatively different hippocampal subfield engagement emerges with mastery of a spatial memory task by rats.
نویسندگان
چکیده
The parallel, entorhinal cortex projections to different hippocampal regions potentially support separate mnemonic functions. To examine this possibility, rats were trained in a radial-arm maze task so that hippocampal activity could be compared after "early" (two sessions) or "late" (five sessions) learning. Induction of the immediate-early gene Zif268 was then measured, so revealing possible activity differences across hippocampal subfields and the parahippocampal cortices. Each rat in the two experimental groups (early, late) was also yoked to a control rat that obtained the same number of rewards, visited the same number of maze arms, and spent a comparable amount of time in the maze. Although overall Zif268 levels did not distinguish the four groups, significant correlations were found between spatial memory performance and levels of dentate gyrus Zif268 expression in the early but not the late training group. Conversely, hippocampal fields CA3 and CA1 Zif268 expression correlated with performance in the late but not the early training group. This reversal in the correlation pattern was echoed by structural equation modeling, which revealed dynamic changes in effective network connectivity. With early training, the dentate gyrus appeared to help determine CA1 activity, but by late training the dentate gyrus reduced its neural influence. Furthermore, CA1 was distinguished from CA3, each subfield developing opposite relations with task mastery. Thus, functional entorhinal cortex coupling with CA1 activity became more direct with additional training, so producing a trisynaptic circuit bypass. The present study reveals qualitatively different patterns of hippocampal subfield engagement dependent on task demands and mastery.
منابع مشابه
Effects of Peripheral and Intra-hippocampal Administration of Sodium Salicylate on Spatial Learning and Memory of Rats
Objective(s) Cyclooxygenases (COXs) are known to play some roles in physiological mechanisms related to learning and memory. Since sodium salicylate is an inhibitor of COX, we have evaluated the effect of peripheral and intra-hippocampal administration of sodium salicylate on spatial learning and memory in male rats. Materials and Methods Male rats were studied in two groups; the first grou...
متن کاملEffect of administration of ascorbic acid and dopamine D2 receptors agonist in the hippocampal CA1 area on spatial learning and memory in adult male rats
Previous studies have shown that ascorbic acid (AA) plays a crucial role in mammalian brain as avitamin and neuronal modulator. There is increasing evidence indicating that dopaminergic system and AAcould affect learning and memory processes. In addition, vitamin C acts as a dopamine antagonist in thebrain. The aim of the present study was to evaluate the intra-hippocampal co-administration of ...
متن کاملThe effect of injection of estradiol benzoate into hippocampal CA1 area on spatial learning and memory in intact and castrated adult male rats
Estrogen has a widespread and complex influence on brain capabilities such as learning and memory. On the other hand, hippocampus as one of the main brain structures has an important role in spatial information processing. There is some evidence on the existence of estrogen receptors in the hippocampal CA1 area. So, in this study the effect of intrahippocampal injection of estradiol benzoate on...
متن کاملThe Role of Estrogen Receptors on Spatial Learning and Memory in CA1 Region of Adult Male Rat Hippocampus
The hippocampal system plays an important role in memory function. Neurohormones like androgens and estrogens that syntheses in hippocampus have an important role in learning and memory. Many biological effects of estrogens in the brain via estrogenic receptors (ERs) are investigated. The current research has conducted to assess the effect of estrogenic receptors on spatial discrimination in ra...
متن کاملThe Role of Estrogen Receptors on Spatial Learning and Memory in CA1 Region of Adult Male Rat Hippocampus
The hippocampal system plays an important role in memory function. Neurohormones like androgens and estrogens that syntheses in hippocampus have an important role in learning and memory. Many biological effects of estrogens in the brain via estrogenic receptors (ERs) are investigated. The current research has conducted to assess the effect of estrogenic receptors on spatial discrimination in ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 5 شماره
صفحات -
تاریخ انتشار 2008